Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li–S Cell

Xabier Judez,† Heng Zhang,*† Chunmei Li,†,* José A. González-Marcos,‡ Zhibin Zhou,§ Michel Armand,† and Lide M. Rodríguez-Martínez†

†CIC Energigune, Parque Tecnológico de Álava, Albert Einstein 48, 01510 Miñano, Álava, Spain
‡Department of Chemical Engineering, Faculty of Science and Technology, University of the Basque Country UPV-EHU, P.P. Box 644, 48080 Bilbao, Spain
§Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China

Supporting Information

ABSTRACT: Solid polymer electrolytes (SPEs) comprising lithium bis(fluorosulfonyl)imide (Li[N(SO₂F)₂], LiFSI) and poly(ethylene oxide) (PEO) have been studied as electrolyte material and binder for the Li–S polymer cell. The LiFSI-based Li–S all solid polymer cell can deliver high specific discharge capacity of 800 mAh gₑכתיה⁻¹ (i.e., 320 mAh gₑכתיה⁻¹), high areal capacity of 0.5 mAh cm⁻², and relatively good rate capability. The cycling performances of Li–S polymer cell with LiFSI are significantly improved compared with those with conventional LiTFSI ([Li[N(SO₂CF₂)₂]) salt in the polymer membrane due to the improved stability of the Li anode/electrolyte interphases formed in the LiFSI-based SPEs. These results suggest that the LiFSI-based SPEs are attractive electrolyte materials for solid-state Li–S batteries.

ACKNOWLEDGMENTS

This work was supported by GV-ELKARTEK-2016

Received: March 10, 2017
Accepted: April 13, 2017
Published: April 13, 2017