Stable cycling of lithium metal electrode in nanocomposite solid polymer electrolytes with lithium bis(fluorosulfonyl)imide

Xabier Júdez a, Michal Piszcz a, Estibaliz Coya a, Chunmei Li a, Itziar Aldalur a, Uxue Oteo a, Yan Zhang a, Wei Zhang a, b, Lide M. Rodríguez-Martínez a, Heng Zhang a, Michel Armand a

a CIC Energigune, Parque Tecnológico de Álava, Albert Einstein 48, 01510 Miñano, Álava, Spain
b Ikerbasque Basque Foundation for Science, 48013 Bilbao, Spain

Received 17 February 2017, Revised 27 June 2017, Accepted 26 July 2017, Available online 7 August 2017.
https://doi.org/10.1016/j.ssi.2017.07.021

Abstract

Nanocomposite solid polymer electrolytes (NSPEs) comprising lithium salt based on two representative sulfonylimide anions (i.e., bis(fluorosulfonyl)imide ([N(SO₂F)₂]⁻, FSI⁻) and bis(trifluoromethanesulfonyl)imide ([N(SO₂CF₃)₂]⁻, TFSI⁻)) have been prepared by simply dissolving the corresponding lithium salt in poly(ethylene oxide) matrix in the presence of inert nano-sized Al₂O₃ fillers. The physicochemical and electrochemical properties of the FSI- and TFSI-based NSPEs are investigated, in terms of phase transition, ion transport behavior, chemical and electrochemical compatibility with Li metal. With the addition of nano-sized Al₂O₃ fillers, a significant improvement in chemical and electrochemical compatibility with Li metal has been observed in both the FSI- and TFSI-based NSPEs. Particularly, the symmetric cell using the FSI-based NSPE can be continuously cycled for > 1000 h at 70 °C. The Li | LiFePO₄ cell with the FSI-based NSPEs shows good cycling stability and capacity retention. These promising results make them attractive electrolytes for safe and stable rechargeable Li metal batteries.