The nickel battery positive electrode revisited: stability and structure of the \(\beta \)-NiOOH phase\†

Montse Casas-Cabanás,*a Maxwell D. Radin,\b Jongsik Kim,\‡c Clare P. Grey,\cd Anton Van der Ven\b and M. Rosa Palacín*e

*CIC energ\'GUNE, Albert Einstein 48, 01510 Miñano, Álava, Spain. E-mail: mcasas@cicenergigune.com
\bMaterials Department, University of California, Santa Barbara, CA 93106, USA
\cChemistry Department, Stony Brook University, NY 11794-3400, USA
\dChemistry Department, Cambridge University, Lensfield Rd., CB2 1EW, UK
\‡Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB E-08193 Bellaterra, Catalonia, Spain. E-mail: palacin@icmab.es
\† Electronic supplementary information (ESI) available: \(^3\)H NMR spectra and XRD patterns of aged \(\beta \)-NiOOH and a discussion of NMR spectra assignments. See DOI: 10.1039/c8ta07460g
\‡‡ Present address Department of Chemistry, Dong-A University, Busan, 604-714, Korea.

The crystal structure of the nickel battery positive electrode material, \(\beta \)-NiOOH, is analyzed through a joint approach involving NMR and FTIR spectroscopies, powder neutron diffraction and DFT calculations. The obtained results confirm that structural changes occur during the \(\beta \)-Ni(OH)\(_2\)/\(\beta \)-NiOOH transformation leading to a metastable crystal structure with a TP2 host lattice. This structure involves two types of hydrogen atoms both forming primary and secondary hydrogen bonds. The formation of TP2 NiOOH as opposed to the more stable P3 host type during \(\beta \)-Ni(OH)\(_2\)/\(\beta \)-NiOOH transformation has a kinetic origin that can be understood by a lower strain penalty involved in the transformation.

Received 1st August 2018
Accepted 26th September 2018
DOI: 10.1039/c8ta07460g
rsc.li/materials-a